Pitágoras

Biografia OpusVida por magui

PAGINAS: 1 2

Pitágoras de Samos fue un filósofo y matemático griego, famoso sobre todo por el Teorema de Pitágoras, que en realidad pertenece a la escuela pitagórica y no sólo al mismo Pitágoras. Afirmaba que todo es matemática, y estudió y clasificó los números. (aproximadamente 582 a. C. – 507 a. C.)

Contenido:

  1. Comienzos
  2. La hermandad pitagórica
  3. Matemáticas
  4. Demostraciones del teorema
  5. Demostración de Platón: el Menón
  6. Video
  7. Demostración de Euclides: proposición I.47 de Los Elementos
  8. Demostración de Pappus
  9. Galería de fotos
  10. Demostración de Bhaskara
  11. Demostración de Leonardo da Vinci
  12. La Armonía Musical
  13. Religión
  14. La transmigración de las almas
  15. Reglas de abstinencia y otras prohibiciones
  16. Su idea de Dios
  17. Astronomía
  18. Leyendas
  19. Fallecimiento

Comienzos

Pitágoras nació en la isla de Samos en el año 582 a. C. Siendo muy joven viajó a Mesopotamia y Egipto (también, fue enviado por su tío, Zoilo, a Mitilene a estudiar con Ferécides de Siros y tal vez con su padre, Badio de Siros). Tras regresar a Samos, finalizó sus estudios, según Diógenes Laercio con Hermodamas de Samos y luego fundó su primera escuela durante la tiranía de Polícrates.

Poco se sabe de la niñez de Pitágoras. Todas las pistas de su aspecto físico probablemente sean ficticias excepto la descripción de una marca de nacimiento llamativa que Pitágoras tenía en el muslo. Es probable que tuviera dos hermanos aunque algunas fuentes dicen que tenía tres. Era ciertamente instruido, aprendió a tocar la lira, a escribir poesía y a recitar a Homero. Había tres filósofos, entre sus profesores, que debieron de haber influido a Pitágoras en su juventud. Ellos fueron Tales de Mileto, Anaximandro y Anaxímenes.

Abandonó Samos para escapar de la tiranía de Polícrates y se estableció en la Magna Grecia, en Crotona alrededor del 525  a. C., en el sur de Italia, donde fundó su segunda escuela. Las doctrinas de este centro cultural eran regidas por reglas muy estrictas de conducta. Su escuela (aunque rigurosamente esotérica) estaba abierta a hombres y mujeres indistintamente, y la conducta discriminatoria estaba prohibida (excepto impartir conocimiento a los no iniciados). Sus estudiantes pertenecían a todas las razas, religiones, y estratos económicos y sociales. Tras ser expulsados por los pobladores de Crotona, los pitagóricos se exiliaron en Tarento donde se fundó su tercera escuela.

El esfuerzo para elevarse a la generalidad de un teorema matemático a partir de su cumplimiento en casos particulares ejemplifica el método pitagórico para la purificación y perfección del alma, que enseñaba a conocer el mundo como armonía; en virtud de ésta, el universo era un cosmos, es decir, un conjunto ordenado en el que los cuerpos celestes guardaban una disposición armónica que hacía que sus distancias estuvieran entre sí en proporciones similares a las correspondientes a los intervalos de la octava musical. En un sentido sensible, la armonía era musical; pero su naturaleza inteligible era de tipo numérico, y si todo era armonía, el número resultaba ser la clave de todas las cosas.

La voluntad unitaria de la doctrina pitagórica quedaba plasmada en la relación que establecía entre el orden cósmico y el moral; para los pitagóricos, el hombre era también un verdadero microcosmos en el que el alma aparecía como la armonía del cuerpo. En este sentido, entendían que la medicina tenía la función de restablecer la armonía del individuo cuando ésta se viera perturbada, y, siendo la música instrumento por excelencia para la purificación del alma, la consideraban, por lo mismo, como una medicina para el cuerpo. La santidad predicada por Pitágoras implicaba toda una serie de normas higiénicas basadas en tabúes como la prohibición de consumir animales, que parece haber estado directamente relacionada con la creencia en la transmigración de las almas; se dice que el propio Pitágoras declaró ser hijo de Hermes, y que sus discípulos lo consideraban una encarnación de Apolo.

La hermandad pitagórica

A su escuela de pensamiento se la conocía como los pitagóricos y afirmaban que la estructura del universo era aritmética y geométrica. Políticamente apoyaron el partido dórico, obteniendo grandes cuotas de poder hasta el Siglo V, en el que fueron perseguidos y donde muchos de sus miembros murieron. La hermandad estaba dividida en dos partes: Los estudiantes y los oyentes. Los estudiantes aprendían las enseñanzas matemáticas, religiosas y filosóficas directamente de su fundador, mientras que los oyentes se limitaban a ver el modo de comportarse de los pitagóricos.

Pitágoras pasa por ser el introductor de pesos y medidas, y elaborador de la teoría musical; el primero en hablar de «teoría» y de «filósofos», en postular el vacío, en canalizar el fervor religioso en fervor intelectual, en usar la definición y en considerar que el universo es una obra sólo descifrable a través de las matemáticas. Fueron los pitagóricos los primeros en sostener la forma esférica de la tierra y postular que ésta, el sol y el resto de los planetas conocidos, no se encontraban en el centro del universo, sino que giraban en torno a una fuerza simbolizada por el número uno.

Los pitagóricos aconsejaban la obediencia y el silencio, la abstinencia, la sencillez en el vestir y el autoanálisis. El primer vegetariano moderno prominente fue el filósofo griego Pitágoras quien vivió a finales del siglo VI a.C. La dieta pitagórica vino a significar el evitar la carne de animales masacrados.

Matemáticas

Los pitagóricos atribuían todos sus descubrimientos a Pitágoras por lo que es difícil determinar con exactitud cuales resultados son obra del maestro y cuáles de los discípulos.

El Teorema de Pitágoras establece que en un triángulo rectángulo el cuadrado de la longitud de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de las longitudes de los dos catetos (los dos lados menores del triángulo rectángulo: los que conforman el ángulo recto). Si un triángulo rectángulo tiene catetos de longitudes   a y b, y la medida de la hipotenusa es  c, se establece que: c2= b2 + a2

Entre los descubrimientos que se atribuyen a la escuela de Pitágoras están:

  • Una prueba del teorema de Pitágoras. Si bien los pitagóricos no descubrieron este teorema (ya era conocido y aplicado en Babilonia y la India desde hacía un tiempo considerable), sí fueron los primeros en encontrar una demostración formal del teorema. También demostraron el converso del teorema (si los lados de un triángulo satisfacen la ecuación, entonces el triángulo es recto).
  • Ternas pitagóricas. Una terna pitagórica es una terna de números enteros (a, b, c) tales que a² + b² = c². Aunque los babilonios ya sabían cómo generar tales ternas en ciertos casos, los pitagóricos extendieron el estudio del tema encontrando resultados como cualquier entero impar es miembro de una terna pitagórica primitiva. Sin embargo, la solución completa del problema no se obtuvo hasta el siglo XIII cuando Fibonacci encontró la forma de generar todas las ternas pitagóricas posibles.
  • Sólidos regulares. Los pitagóricos descubrieron el dodecaedro y demostraron que sólo existen 5 poliedros regulares.
  • Números perfectos. Estudiaron los números perfectos, es decir aquellos números que son iguales a la suma de sus divisores propios (por ejemplo 6=1+2+3). Encontraron una fórmula para obtener ciertos números perfectos pares.
  • Números amigables. Un par de números son amigables si cada uno es igual a la suma de los divisores propios del otro. Jámblico atribuye a Pitágoras haber descubierto el par amigable (220, 284).
  • Números irracionales. El descubrimiento de que la diagonal de un cuadrado de lado 1 no puede expresarse como un cociente de números enteros marca el descubrimiento de los números irracionales.
  • Medias. Los pitagóricos estudiaron la relación entre las medias aritmética, geométrica y armónica de dos números y obtuvieron la relación.
  • Números figurados. Un número es figurado (triangular, cuadrangular, pentagonal, hexagonal, etc.) si tal número de guijarros se pueden acomodar formando el polígono correspondiente con lados 1,2,3, etc. (ver figura).

Demostraciones del teorema

Demostración de Platón: el Menón

En uno de los meandros del Menón se plantea el problema de la duplicación del cuadrado –izquierda y centro-. La solución que elabora Platón encierra inesperadamente una demostración del teorema de Pitágoras –derecha-, si bien referida exclusivamente a los triángulos rectángulos isósceles.

Dinos, Sócrates, ¿cómo se adquiere la virtud? ¿Mediante la enseñanza o mediante el ejercicio?

Esta filosófica pregunta forma parte del Menón de Platón, y a su tenor no parece que la Geometría vaya a hacer acto de presencia en el Diálogo, pero el filósofo es quien maneja los hilos y unas páginas más adelante nos encontramos con cuadrados y superficies. En ese fragmento, Platón habla de que conocer es recordar. Cuando creemos estar aprendiendo, lo que sucede en realidad es que recordamos las verdades que nuestra alma pudo percibir de forma inmediata antes de encarnarse en el cuerpo.

En el texto Sócrates se lo demuestra a Menón llamando a uno de sus esclavos, que nunca ha sido educado, pero que, sin embargo, es capaz de llegar a demostrar el teorema de Pitágoras. Sócrates le plantea el problema de la duplicación del cuadrado. Sucesivas preguntas van sacando de la mente del esclavo la solución del problema, con lo que pretendidamente aquél no hizo sino “recordar” lo que ya “sabía”. Ese método para sacar esos conocimientos es la mayéutica, en la cual, el individuo que conduce al otro hacia el conocimiento, como en este caso hace Sócrates, desempeña una función similar a la de una partera, donde lo que logra extraer de su interlocutor, es el conocimiento de lo verdadero.

Platón construye un cuadrado cuyo lado es de dos unidades (izquierda, gris). Su área vale lo de cuatro unidades cuadradas. Trazando un nuevo cuadrado sobre su diagonal AB, obtiene un cuadrado de ocho unidades cuadradas (centro, azul), doble superficie de la del primero.2 Hasta aquí la duplicación del cuadrado. Pero también se ha demostrado el teorema de Pitágoras (derecha): el área del cuadrado azul (8u2) construido sobre la hipotenusa AB del triángulo rectángulo ABC, es igual a la suma de las áreas de los cuadrados grises (4u2 cada uno) construidos sobre los catetos AC y BC. Generalizando: cada uno de los cuadrados construidos sobre la hipotenusa (la diagonal del cuadrado inicial) contiene cuatro de dichos triángulos.

Queda demostrado el teorema de Pitágoras, si bien restringido a los triángulos rectángulos isósceles.

Demostración de Euclides: proposición I.47 de Los Elementos

La proposición I.41 de Euclides. La superficie del rectángulo ABCD es el doble de la de cualquiera de los triángulos: sus bases son la misma –DC-, y están entre las mismas paralelas. Esto es cuanto necesita Euclides para demostrar el teorema de Pitágoras.

La demostración de Euclides es puramente geométrica. Su columna vertebral es la sencilla proposición I.47 de Los Elementos.

La proposición I.36 de Euclides: los paralelogramos ABCD y EFCD tienen áreas equivalentes, por tener igual base, y estar comprendidos entre las mismas paralelas.

El descubrimiento de los números irracionales por Pitágoras y los Pitagóricos supuso un contratiempo muy serio.3 De pronto, las proporciones dejaron de tener validez universal, no siempre podían aplicarse. La demostración de Pitágoras de su teorema se basaba muy probablemente en proporciones, y una proporción es un número racional. ¿Sería realmente válida como demostración? Ante esto, Euclides elabora una demostración nueva que elude la posibilidad de encontrarse con números irracionales.

El eje de su demostración es la proposición I.47 de Los Elementos:

Si un paralelogramo y un triángulo tienen la misma base, y están comprendidos entre las mismas paralelas, entonces el área del paralelogramo es doble de la del triángulo. Esto es tanto como decir que a igual base y altura, el área de aquél dobla a la de éste.

Tenemos el triángulo ABC, rectángulo en C, y construimos los cuadrados correspondientes a catetos e hipotenusa. La altura CH se prolonga hasta J. Seguidamente se trazan cuatro triángulos, iguales dos a dos:

Triángulos ACK y ABD: son iguales, pues siendo AD=AC, y AK=AB, necesariamente BD=CK. Sus tres lados son iguales.

Triángulos ABG y CBI: análogamente, AB=BI, y BG=BC, así que AG=CI. Sus tres lados son asimismo iguales.

Abundando en las anteriores consideraciones, nótese que un giro con centro en A, y sentido positivo, transforma ACK en ABD. Y un giro con centro en B, y sentido también positivo, transforma ABG en CBI. En la demostración de Leonardo da Vinci nos encontraremos de nuevo con giros que demuestran la igualdad de figuras.

Veamos seguidamente que:

Las paralelas r y s comprenden al triángulo ACK y el rectángulo AHJK, los cuales tienen la misma base, AK. Por tanto de acuerdo con la proposición I.47 AHJK tiene doble área que ACK.

Las paralelas m y n contienen a ABD y ADEC, cuya base común es AD. Así que el área de ADEC es doble de la de ABD.

Pero siendo ACK=ABD, resulta que el rectángulo AHJK y el cuadrado ADEC tienen áreas equivalentes. Haciendo razonamientos similares con los triángulos ABG y CBI, respecto al cuadrado BCFG y al rectángulo HBIJ respectivamente, concluimos que éstos últimos tienen áreas asimismo iguales. A partir de aquí, es inmediato que la suma de las áreas de los cuadrados construidos sobre los catetos, es igual al área del cuadrado construido sobre la hipotenusa.

PAGINAS: 1 2

Comentar

Debes iniciar Sesión para publicar un comentario.

Paco de Lucia

Francisco Sánchez Gómez, de nombre artístico Paco de Lucía, (Algeciras (Cádiz), 21 de diciembre de 1947, Cancún (México), 26 de […]

Lermo Balbi

Lermo Balbi, fue un poeta, escritor y dramaturgo nacido en Rafaela, provincia de Santa Fe, donde también falleció. Bachiller, fue […]

Francisco Paco Urondo

Francisco Paco Urondo fue un poeta, periodista, académico y militante político.Dio su vida luchando por el ideal de una sociedad […]

Los Muppets

Los Muppets son un grupo de marionetas creados por Jim Henson en 1964. Este peculiar grupo de personajes fue protagonista […]